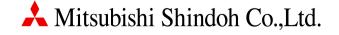
Current situation for lead-free copper alloys in Japanese drinking water applications and Field test results of lead leaching into drinking water



Research & Development Sambo Plant Mitsubishi Shindoh Co., LTD Sakai, Osaka, Japan

Agenda

1. Current situation toward leadfree in Japan

2. Field test results of lead leaching in actual environment

Current situation toward lead-free in Japan-1

- Drinking water standard for lead was tightened in April 2003 Start of actual lead-free trend in drinking water applications ☆Lead-free has been realized mainly for water
- meters , valves and fittings
 - \rightarrow •Newly-installed water meters must be lead-free
 - •Lead-free water meters to reach approx. 50%

penetration in 2009

 \Rightarrow Lead-free being accelerated for faucets;

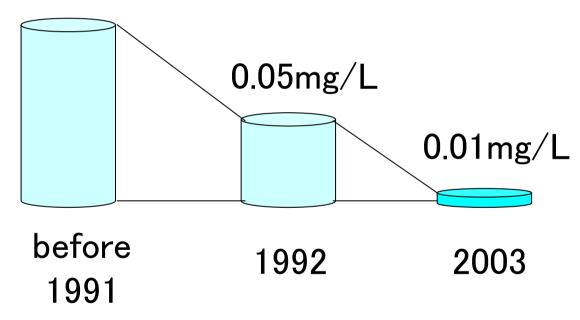
Surface treatment still popular to reduce lead leaching

Lead-free progressing in Automobile/Electric applications

Standardization of lead-free copper alloys in Japan

2005 Industry standard JCBA T204 for wrought copper 2006 Registration as JIS H2202, 5120, 5121 for castings

Current situation toward lead-free in Japan-2


- 1. In line with the trend of using lead-free copper alloys for waterworks applications in Japan, bismuth-bearing copper alloy and silicon-bearing copper alloy have been used. These alloys are used for both castings and rods, showing a higher consumption for the former. Bismuth-bearing copper alloy are used more than silicon-bearing copper alloy in terms of weight.
- 2. For forged products and machined products, either silicon-bearing copper alloy or bismuthbearing copper alloy is selected depending on the requirements of the final specifications.
- 3. Both silicon-bearing copper alloy and bismuth-bearing copper alloy products have been produced in amounts well exceeding 10,000 tons on an accumulated basis in the seven years since the start of full-scale mass production. Meanwhile, no problem has been reported in the market.
- 4. While the ingot cost of bismuth is expensive (approx. US\$26,000/ton%), its percentage in the brass alloy is as low as 2% at the most. Therefore, the cost efficiency should not be reviewed solely from the ingot cost, when giving consideration to the fact that the copper content should be increased by 10% or slightly more in the silicon-bearing copper alloy with an ordinary brass ingot.

in 2008, Metal cost of copper : approx. US\$7,000/ton in 2008

5. Reviewing the availability aspect, in recent years it has often been difficult to procure copper metal or recycled copper material. On the other hand, the stable procurement of silicon and bismuth ingots has never been at risk.

0.1mg/L

Equipment for water supply service

Test methods of effect to water quality (JIS S 3200-7:2004)

Substance		vater implements Icets etc.)	Feed water pipe		
Copper and its compounds	0.1(0.98)	mg/L or less	1.0	mg/L or less	
Zinc and its compounds	0.1(0.97)	mg/L or less	1.0	mg/L or less	
Cadmium and its compounds	0.001	mg/L or less	0.01	mg/L or less	
Lead and its compounds	0.001(0.00)7)mg/L or less	0.01	mg/L or less	
Arsenic and its compounds	0.001	mg/L or less	0.01	mg/L or less	
Selenium and its compounds	0.001	mg/L or less	0.01	mg/L or less	
Chromium(VI) compounds	0.005	mg/L or less	0.05	mg/L or less	
Mercury and its compounds	0.00005	mg/L or less	0.000	05mg/L or less	
Aluminum and its compounds	0.02	mg/L or less	0.2	mg/L or less	
Iron and its compounds	0.03	mg/L or less	0.3	mg/L or less	
Magnesium and its compounds	0.005	mg/L or less	0.05	mg/L or less	

Test methods of water quality in Japan

Leachate (to make 1L)	pH:7.0±0.1 (Adjust by using HCI or NaOH) Hardness:45±5mg/L Alkalinity:35±5mg/L Residual chlorine:0.3±0.1mg/L
	1mL of NaClO(Available chlorine:0.3mg/mL) + 22.5mL of 0.04M NaHCO ₃ + 11.3mL of 0.04M CaCl ₂
Conditioning	14days; Use the leachate of about 23°C
Leaching	16hours; Fill, seal the inside of equipment under test with the leachate of about 23°C
Correction	$\rho_{\rm B}$ = NF × C' NF=SAF/SAL × VL/VF
Correction	$\rho_{B=}$ correction value(mg/L), NF=correction factor, C'=analysis result, SAF, SAL=contact surface area of in contact with drinking water, the
of analysis	leachate respectively
result	VL, VF=internal volume in contact with the leachate, drinking water respectively

Composition of lead-free copper alloy castings on JIS H5120 (Copper and Copper alloy castings)									
Principal Composition									
Alby No.	Cu	Sn	Zn	Bi	Se	Р	Si	$Pb^{\gg 1}$	Production ^{%2} ton/month
C A C 804	74.0 ~ 78.0	—	18.5 ~ 22.5	—	—	0.05~ 0.2	2.7 ~ 3.4	0.25	100
C A C 901	86.0 ~ 90.6	4.0~6.0	4.0~8.0	0.4~ 1.0		—		0.25	
C A C 902	84.5 ~ 90.0	4.0~6.0	4.0~8.0	1.0~ 2.5				0.25	1300
C A C 903B	83.5 ~ 88.5	4.0~6.0	4.0 ~ 8.0	2.5~ 3.5	—			0.25	1300
CAC911	83.0~ 90.6	3.5 ~ 6.0	4.0 ~ 9.0	0.8~ 2.5	0.1~ 0.5			0.25	

※1 Maximum allowance composition

X2 Average in 2008

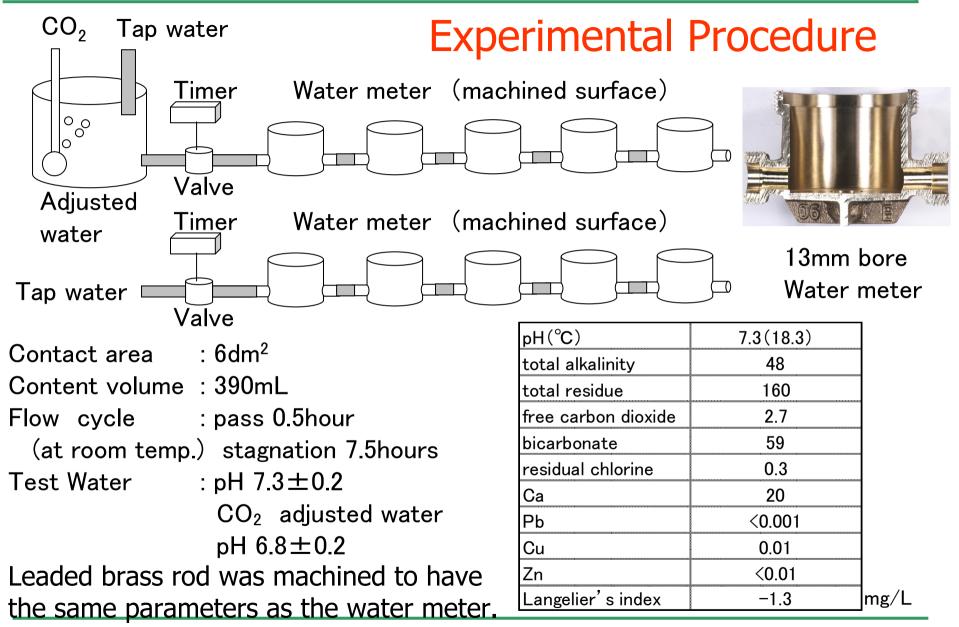
Lead-less free-cutting alloy rods and bars Composition of lead-free copper alloy rods and bars on JCBA (Japan Copper and Brass Association) T204

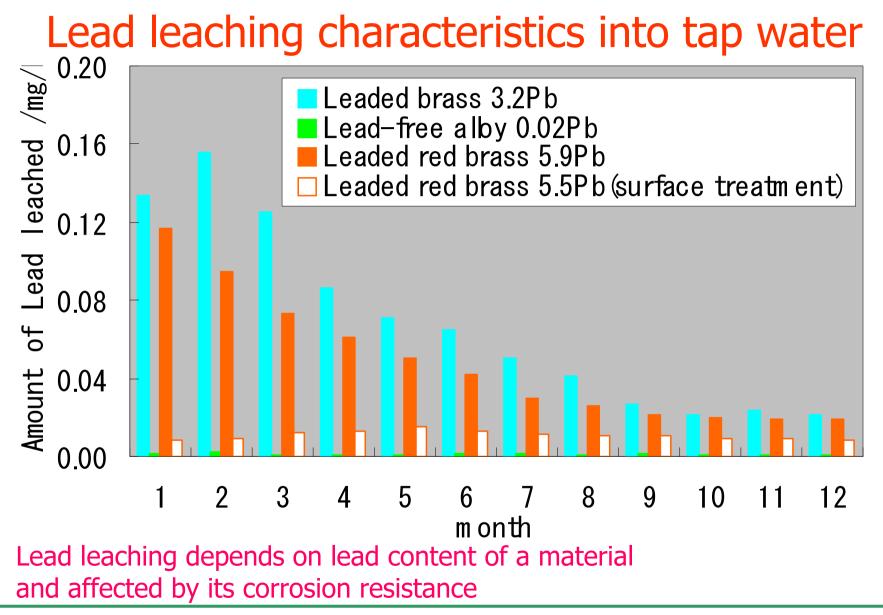
Alby No.	Cu	Bi	S i	Pb	Zn	Sn	Р	Fe	Cd	Se+A⊯Sb +Te+Ni	0 ther	Production^{%1} ton/month
C 6801	57.0 ~ 64.0	0.5 ~ 4.0	_	≦ 0.01	rem.	0.1~ 2.5	≦0.2	≦0.5	≦ 0.0075	_		
C 6802	57.0 ~ 64.0	0.5~ 4.0	_	≦0.1	rem.	0.1~ 3.0	≦0.2	≦0.7	≦ 0.0075	_		250
C 6803	57.0 ~ 64.0	0.5 ~ 4.0	_	≦ 0.01	rem.	0.1~ 2.5	≦0.2	≦0.5	≦ 0.0075	0.02~ 0.6		230
C 6804	57.0 ~ 64.0	0.5 ~ 4.0	_	≦0.1	rem.	0.1~ 3.0	≦0.2	≦0.7	≦ 0.0075	0.02~ 0.6		
C 6932	74.0 ~ 78.0	_	2.7~ 3.4	≦ 0.10	rem.	≦0.6	0.05 ~0.2	≦0.1	≦ 0.0075	_	Mn≦0.1 Ni≦0.2	100

%1 Average in 2008

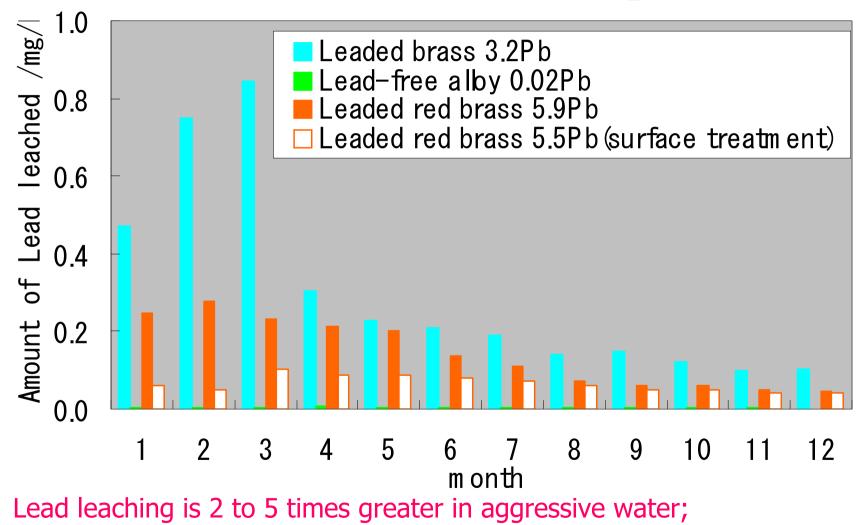
Agenda

1. Current situation toward leadfree in Japan

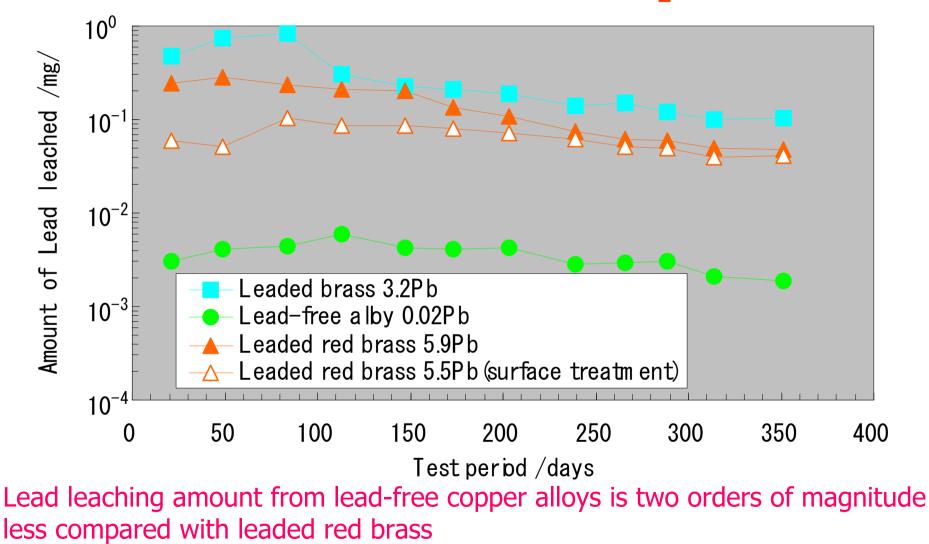

2. Field test results of lead leaching in actual environment

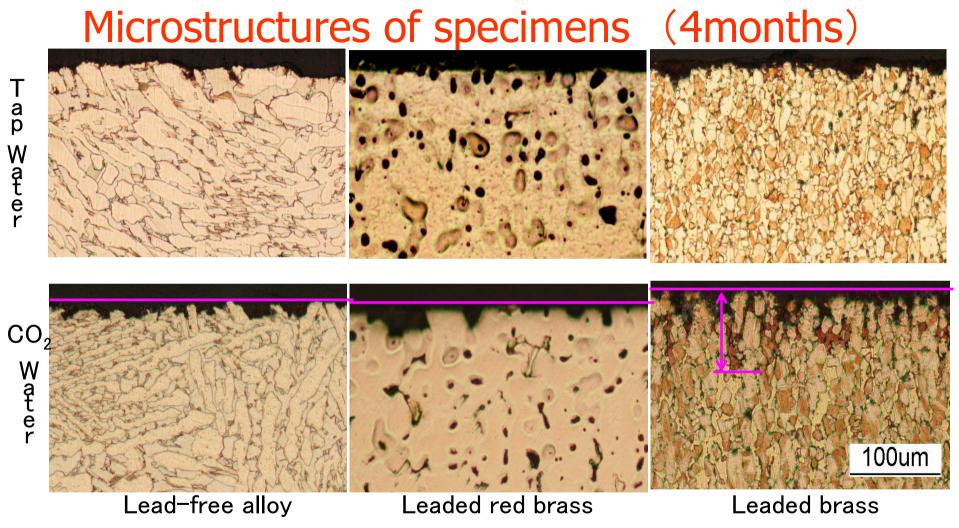


Lead leaching test into tap water in Japan Chemical composition of specimens


	A lbys	Cu	Pb	Sn	Si	Zn
Le	59.41	3.16	0.29	_	rem.	
Lea	d-free alby	75.89	0.02	0.01	3.15	rem.
Leaded red brass	no treatm ent	83.11	5.93	4.04	_	rem.
	surface treatm ent	84.92	5.52	4.27		rem.

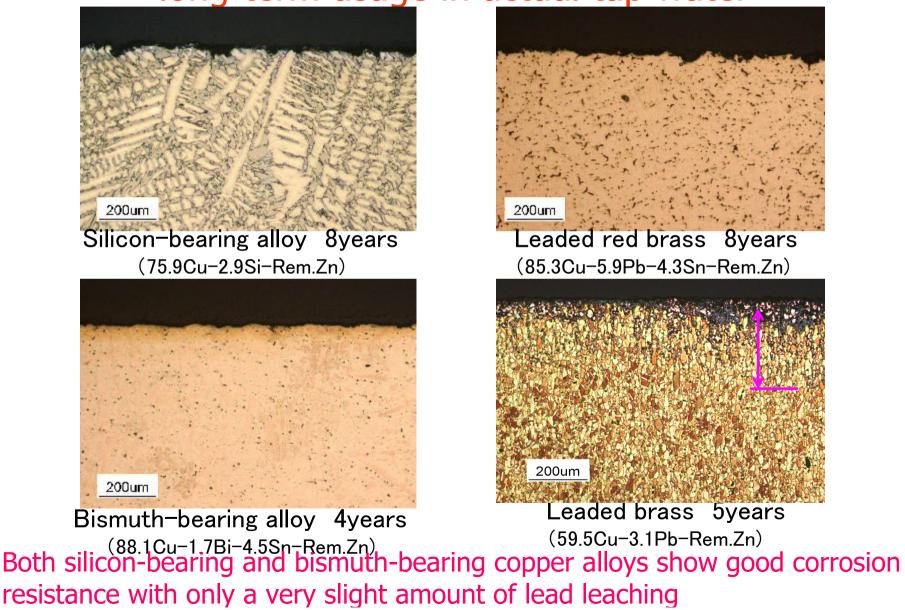
Lead Leaching test 2


Lead leaching characteristics into CO₂ adjusted water



particularly affected by corrosion resistance Inhibitory effect against lead leaching by surface tre

Inhibitory effect against lead leaching by surface treatment lasts for the first two months


Lead leaching characteristics into CO₂ adjusted water

General corrosion observed for lead-free alloy/leaded red brass; Dezincification corrosion for leaded brass

Corrosion status of various copper alloys after long-term usage in actual tap water

Conclusions

- Lead-free copper alloys started to be widely used in 2003 after the drinking water standard for lead was revised to 0.01mg/L.
 Lead-free copper alloys are divided broadly into two groups: bismuth-bearing copper alloys and silicon-bearing ones. Wrought copper products were standardized in industry in 2005. JIS designates castings in 2006 while wrought copper products are scheduled in 2010.
- Lead leaching amount depends on lead content of a material and is affected by water quality as well as corrosion resistance (dezincification corrosion resistance) of the material.
 - Dezincification corrosion is accelerated in aggressive test water, leaching lead 2 to 5 times as much.
- Inhibitory effect against lead leaching by surface treatment is acknowledged for the first two months or so, although lead leaching increases due to long-term usage or water quality condition.

